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Low-Frequency, Bottom-Interacting Pulse
Propagation in Range-Dependent Oceans

MICHAEL D. COLLINS

(Invited Paper)

Abstract-As asymptotik-numerical model for low-frequency, hot- The need for the development of bottom interaction capabil-
tom-lateracting pulse propagation In the ocean is derived. The model ity into these modes was the motivation for the present study.
works in the time domain using an approach analogous to the parabolic A robust numerical solution was developed for the NPE [17],
equation method that is commonly used in the frequency domain. The
model handles depth and range variations In the speed of sound, den- and it seems more natural to march a solution of the wave
sity, and attenuation. The attenuation is assumed to depend linearly on equation in time rather than range. Thus, we work with the
frequency in the sediment. The accuracy of the model is demonstrated NPE rather than the TDPE. Since the nonlinear term in the
with a benchmark. NPE is dropped, we do not adhere to the terminology for

Keywords-parabolk, pulse, attenuation, density, this model and refer to the linear version of the NPE as the

I. INTRODUCTION progressive wave equation (PWE). The number of operations
required for the numerical solution of the PWE increases with

DANGE-DEPENDENT propagation problems can be the frequency cubed. Thus, this model is best suited to handle
rved efficiently with the parabolic equation (PE) low-frequency problems.

method. It is most useful for low-frequency problems be-
cause the number of operations required for the numerical I. DERIVATION OF THE PWE
solution of the PE increases with the frequency squared for We neglect attenuation for now and begin with the following
two-dimensional problems. The PE method was first applied wave equation due to Bergmann [21] for thk. acoustic pressure
to underwater acoustics by Tappert [1], who also provided a P 1 a2p
historical account of the PE method. For this application, the PTV ) _ ( )
PE method has been highly developed. In its present state, it (P C2 at2

can handle density variations [2]-[41, range dependence [5], where t is time, c is sound speed, and p is density. Azimuthal
three-dimensional variations [61-[8], and wide-angle propa- dependence is ignored, and cylindrical coordinates are used
gation [91, [10]. The accuracy of the PE method has been with z being the depth below the ocean surface and r being
demonstrated with many benchmark comparisons using nor- the horizontal distance from a point sound source at z = zo.
mal mode and other results [11]. The dimensions of the independent variables have been re-

Pulse propagation problems can be solved with frequency- moved using the factors co = c(zo), p0 = p(z 0 ), and the
domain methods by solving for one frequency at a time and characteristic time scale r of the source function F(t). Cylin-
summing the results. The PE method [121, [13], the fast-field drical spreading applies for large r because the ocean acts
program [14], and the WKB method [15), [16] have been used as a waveguide. Thus, spreading can be handled by defining
in this fashion. These approaches can probably be improved p = r112p. We let ro X- 1, assume I 49/ar I ap/az 1, and
substantially for broadband pulses by working in the time do- approximate (1) for r > ro by
main because a significant ambunt of effort must be devoted to a2p I a ap + a2p I a2p
managing the component frequencies and performing the sums az p aZ + =ar c2 (t2.

with the frequency-domain approach. Since range-dependent Following the approach used to derive the TDPE and the NPE,
problems are frequently of interest, a time-domain approach weointhe apprnce use oing t ard at the refanalogous to the PE method would be very useful. Two such we introduce a reference frame moving outward at the refer-

analgou tothePE ethd wuld e vry sefl. wo uchence speed co with the new independent variable s = r - cot
models exist, the nonlinear progressive wave equation (NPE) and new dependent variable
[17], which is an initial value problem in time, and the time-
domain parabolic equation TDPE [18]-[20], which is an initial u(s, Z, t) = p(s + cot, z, t). (3)
value problem in range. In contrast to the PE method, these With these definitions, (2) becomes
models have not been fully developed. a2u U a0  u/ ( c02) a 2 U

Manuscript received January 29, 1988; revised July 15, 1988. This work -- p az - a
was supported by ONR and NORDA.

The author is with the Naval Ocean Research and Development Activity, 2c 0 a2U I a2U
Stennis Space Ccntcr. MS 395 .9. + --- =-- -- . (4)
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The PE method is based on the small-angle asymptotic The coefficient function U, which depends weakly on r and z,
limit. Long-range propagation in the ocean results in nearly is ignored. The loss operator is valid to leading order because
vertical wavefronts due to the fact that wide-angle rays are it is correct in the limit A - 0.
not trapped by the oceanic waveguide. In other words, energy In the time domain, the Fourier transform is applied to
propagation is limited to within the angle $ of the horizontal, decompose the signal as follows:
where e = tan2 j4 , 1. For the plane wave

u(s,z,t) = flscos4 + zsin + (cos - l)c 0t] (5) u(s,z,t) = -i i(k,z,t)exp(iks)dk (11)

with < 4, we observe that au/at = 0(c) and au/az = f.
O(e1/2). ui(k, z, t) = _ u(s, z, t) exp(-iks)ds. (12)

We assume that c = co + O(e), p(r, z) = p'(r', ze"/2), r > -

r0 = O(E-I), and c0 /d = 0(e/ 2), where p' is inde- It follows from (12) that afi/at = 0(e)and1 la/az = O(EI/2).
pendent of c, . 4 E, and d is the ocean depth. Using the In (1I), the field is written as a superposition of plane waves
scales suggested by the above discussion, we assume that each multiplied by a function depending weakly on t and z.
u(s,z,t) = u'(s, ze 1/ 2, te), where u' is independent of e. This A discrete loss operator analogous to (10) would act over the
results in au/at = 0(e) and au/az = O(e 1/2). An analogous time increment At as follows:
scaling is commonly used in the frequency domain for deriv- z-
ing the PE [1], [4]. To leading order in e, the approximation u(s, Z, t) ' __ i(k,z,t)exp(iks - (k I CoAf dk
nmadc ':i going from (1) to (2) is valid and (4) becomes

as t - t +At. (13)
Co (a2u - ap1u \ u au =0. (6) Once again, the coefficient function of the plane wave is ig-
2 z2  p az + ( S + ) --t nored, and the loss operator is valid to leading order because

We assume u has compact support in s for all time and inte- it is correct in the limit 0 - 0. Substituting (12) into (13)
grate (6) with respect to s to obtain the PWE and interchanging the order of integration, we obtain

au = C ( 2 U Iap au au U(S,Z,,) 0l CoAt Go u(s',z,t) ds'

=paZa- ds' +(c O -C) . (7) - c __ (7/0CoAt)
2 + (S' - S)2

III. THE Loss TERM as I -t +At. (14)

Let 17 = (40rlog 0e)-' and 0 be the attenuation in decibels A continuous loss operator L is obtained by taking the limit
per wavelength with 170 = 0(e). For the circular frequency w, in (14) to obtain
the complex wavenumber K = k(I + ith) is assumed in the 70C" u(s', z, t) ds'
sediment, where the 0(l) wavenumber k = w/c. This for- Lu = lim [u'
mulation is used to model attenuation that increases linearly at-.0 w _- (7/0cOA) 2 + (S' - s) 2

with frequency, which is in agreement with experimental re- u(s, z, t)
suits 1221-[24] involving various materials and frequencies. (15)
The linear dependence has been challenged [25], [26]. How- At

ever, the model we derive can be modified to handle a general 0 ZZ
frequency dependence. Lu lim o-__ u(s',z,t)-u(s,Zt) ds'. (16)

The dependent variable p in (2) is replaced with U, which A-0 3 (7/0cOAt)
2 + (s' - S)2

is defined by In going from (15) to (16), we have used the identity

p(r,z,t) = U(r,z)exp(ikos) (8) i1CoAt s' ds'

with the assumption U(r,z) = U'(re,ze"2 ), where k0 = 1/2, (1l3cOAt) 2 + (s' - S)2  1 (17)
w/c) and U' is independent of E. Substituting (8) into (2) and
retaining leading-order terms, we obtain the following PE, The limit in (16) exists as the Cauchy principal value of the
which is valid for r > r0 : integral with At = 0.

au i a 2u I ap au Adding Lu to (7), we obtain the PWE

ar 2k0  a aZ
2  p aZ aZ au Co a / 2U -I aa au

+ i(k - ko)U - 7ko U. (9) at 2- a sz2pazaz as

In the absence of the other operators on the right-hand side 17Co s' t) - u(s, z, t)
of (9), the loss operator -i7 3koU acts over the range incre- + - 3) ds'. (18)
ment Ar as follows:

U(r. z) exp(ikos) - U(r, z) exp(ikos - r43koAr) This PWE differs from the NPE of [17] by the presence of the
density and attenuation terms and the absence of the nonlinear

as r - r + Ar. (10) and spreading terms. The integral operator appearing in (18)

..... ...... .... . . . . . . . - . - -- = m i ,-nu .. u uMuM nI
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is of the Kramers-Kr6nig type [27]. The approach we have Substituting (24) and (25) into (26) we obtain
described can be generalized to handle an arbitrary complex
dispersion relation by replacing the function ,ifl I k I in (13) A" + B 82W = 0 (27)
by a complex function of k. asat

IV. NUMERICAL SOLUTION OF THE PWE where the vector 9(s, t) contains the values of u at the depth

The domain is discretized with grid spacings As, Az, and grid points and A and B are tridiagonal matrices with entries
At. The ocean surface at z = 0 is assumed to be pressure Aii-I = 2 -Pi-IlliIl/2 (28)
release, and the signal is assumed to be trapped within r =
(0, sn) x (0, z,) due to the moving frame and the lossy Aii = Pi-Ii-l/2 + Pi+Ii+l/2 - 4 (29)
bottom. Thus, the boundary condition u = 0 is imposed on
ar. The ocean depth is assumed constant over r. This is a Aii+ I = 2 -Pi+oI I/2 (30)
valid leading-order approximation if range dependence is suf-
ficiently gradual. r

We solve (18) numerically using the method of alternating - if Pi = Pi+I
directions, which was used to solve the NPE [ 17] and requires Oi + 1/2 = Pi

numerical methods for each of the following: log(pi+1 ) - log(p,) if Pi 6 Pi+ I (31)
au au 0(19)Pi+I -Pi
T-t- + (C - co) T-S = 0 (19) Bj1 (Z,(2

Bi,i- - A) 2 (32)
au _ CO (8 2u l ap au ds (20)3c
at 2 - -Z

2 p 71 (220

Bi, = (2Az (33)
au = ij0c0  u(s', Zt) - u(s, Z, t) ds'.3c

at = _ _0 (S' -s)2 (A) 2

The Lax-Wendroff scheme [28] may be applied to solve the Bii+ I = 3c (34)

first-order hyperbolic equation (19). The Courant-Friedrichs-
Lewy (CFL) condition, We define the grid points sj = jAs and t, = nAt and

max Ic - cI At As (22) Wj, = W(sj, t,). Integrating (27) over (sj, sj+ 1) x On, t' + 1 )
using the trapezoid rule where necessary, we obtain

must be satisfied for stability. AsAt
With the imposed boundary conditions, (20) is equivalent 4 A(j + ,n+ I + uj+ In + ujn+I + ai,n)

to

a2u 1 ap au + 2 a2u = 0. (23) +B(j+ I,+I - Uq+ ,. - u .n+ + .) = 0. (35)
_z
2  

p _z Co = 0.z C0 asat In the casecm co, p a po, and -_ 0, (18) reduces to (20).

Galerkin's method with linear test functions is applied to dis- In this situation, energy flows from s = s,. to s = 0 due to
cretize depth dependence. The depth grid points are defined by geometric dispersion. This physical consideration implies that
zi = Az. The basis functions *j(z) vanish for I z - zi I > Az, (35) must be applied by sweeping from s = S,,.ax to s = 0,
increase linearly from 0 to 1 over zi-1 < z < zi, and de- which results in the scheme
crease from 1 to 0 over zi < z < zi+ 1.

The basis functions can be used to approximate a function Mii'n+I = F +I (36)

by a piecewise linear function with exact agreement at the AsAt
grid points. We define ui(s, t) = u(s, zi, t) and pi = p(zi) M = B - A (37)
and obtain

- AsAt
u(s,z,t) - ui(s,t)*i(z) (24) bm +I - 4 A(j+1,.+ + uj++. n + I. )

4

P(z) Y p*,i(z). (25) +B(9j +I,+I - u'j+ ,n + gj,,). (38)

The loss operator is defined by (14) as At - 0. Thus,
Galerkin's method discretizes depth dependence in (23) by (14) is used to solve (21). The CFL condition (22) and ac-
using (24) and (25) and requiring that the following hold for curacy considerations result in 5 = i70coAt/As c l.(In the
all i : example below, = 0.023.) Thus, the kernel in (14), which

2 a2u approximates a delta function, is nearly singular at s' = s.
*i(Z) I dz = 0. (26) The integral over (si - As/2, si + As/2) is approximatedau d = COas2t by replacing u(s, z, t) with u(si, z, t) and integrating the kernel



COLLNS: LOW-FREQUENCY, BOTTOM-INTERACTING PULSE PROPAGATION 225

analytically to obtain Fourier decomposition for approximating broadband source
1 functions because the Gaussian itself is a broadband source

u(s, z't) l_ - u(s ,z,t) ltan _ i- j + - ) function.

a VI. PWE BENCHMARK
The Gaussian source G,(t) with P = 150 s - I is placed

-tan- (39) atzo = 75 m in an ocean in which c = co = 1500 m/s.I] Ocean depth is 200 m for r < 4 km, linearly decreasing from
j) 2  200 to 50mover4 km < r < 8 km, and 50m forr > 8

For i t- j, the terms in the sum are of order 6(i km. In the sediment, c = 1600 m/s, p = 1.5 g/cm 3 , and
Thus, the sum may be truncated making the loss operator 0 = 0.5 dBIX. The grid spacings are At = 2.5 r/c 0, s =
numerically efficient. Im, and Az = 1.5 m with sng = 400 m and z, = 300

V. THE INITIAL FIELD m. An absorbing layer 150 m thick is added below z = Znux

The PWE is not valid near the sound source because it is over which 0 increases to prevent reflections. The grid r is

derived from a singular perturbation problem. Both au/at and initialized with the leading Gaussian front at r = 350 m and

1/r fail to be O(E) in a boundary layer near r = 0. In the s = 300 m.

boundary layer and within the angle 4, of the horizontal, rays Fig. 1 contains a sequence of contour plots of the acoustic

are not significantly affected by the weak refraction of the pressure. The ocean bottom is marked with a solid horizontal

ocean. Thus, the PWE may be initialized near the source at line. Solid contours represent p > 0; dashed contours rep-

t = to with resent p < 0. The leading front is located about 100 m to
the left of the leading end of the grid. The reflection coeffi-

p(r,_z, t) = _F t- d - F 1 ( 4 0_ ) cient at the ocean surface is - 1. The reflection coefficient at
d-, CO / - \ CO / the ocean bottom is approximately -1 for small-angle prop-

where d' = r 2 + (z ± z) 2 . agation. Thus, the fronts that trail the leading front and have
to s reflected from the ocean surface and bottom are composed

This solution is valid for small r and e because refraction in of alternating solid and dashed contours. The signal is essen-
the ocean is negligible over short ranges, and the propagating tially confined to r, which was assumed in the derivation of
rays, which travel within the angle 4' from horizontal, do not the nfical ton.
intersect the ocean bottom near the source. It breaks down the numerical solution.
for large r because refraction in the ocean is significant over The leading front is accompanied below the interface by an
large ranges, and propagating rays from the source eventually evanescent wave. This is analogous to the evanescent portions

reflect from the ocean bottom. of the normal modes for the time-harmonic problem. The re-
The numerical method used to solve the PWE requires a flected fronts also exhibit this feature. The evanescent tails

continuously differentiable source function with compact sup- penetrate deeper into the water for these fronts, which propa-

port. A source function that approximates a delta function gate at higher angles. In analogy, the length of the evanescent
would be useful because it can be used to approximate the tails of the normal modes increase with propagation angle. In
impulse response of the ocean. The Gaussian source function the upslope region, the evanescent tails grow extremely long
G,(t) = exp [-(Vt) 2j. which was used in [17], has these and energy penetrates into the sediment. This behavior is anal-

properties, ogous to the coupling of energy from the discrete spectrum

Since the Gaussian source function approximates a delta into the continuous spectrum for the time-harmonic problem

function, it is useful for convolution. A given source function as described in [5]. The tails begin to subside in length after

may be approximated by the top of the slope is reached.
A time-harmonic source with w = 100 s-1 is approxi-

F(t) _ anG,(t - tn) (41) mated by
n

provided P is sufficiently large. The coefficients an are de- (n + Ir
termined by requiring the approximation to be exact at the sin (wt) =1.267 (-1)G, (43)
points In, which do not necessarily correspond to the grid n
points t, and may be spaced irregularly. This constraint gives
the following system of equations:

The constants a" = 1.267 • (-1) n and tn = (n + )ir/w
,m+q were determined by taking q = I. It is evident from Table I

F(t") = , anG,(tm -in). (42) that (43) gives an accurate approximation. By superposition,
M=M-q the time-harmonic response Pcw is approximated by

The matrix corresponding to this system of equations is re- 1)
duced to the 2q + 1 diagonals centered about the main diag-
onal, where q is a small integer, due to the fact that G,(t) pcw(t) =_-1.267 (-i)2 (44)
decays rapidly away from t = 0. In some situations, the n J
approximation given by (41) might be more useful than the
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TABLE I to extend the present work might compare the PWE with the
APPROXIMATION OF A SINUSOID BY GAUSSIANS. TDPE and compare run-times for these models and frequency-
Two GAUSSIANS USED PER CYCLE CENTERED domain models. It would be advantageous to extend the model

AT THE MAXIMA AND MINIMA OF
THE SINUSOID to handle wide-angle propagation, which is known to be im-

t(ms) sin (wt) a"G,(t - tn) portant from frequency-domain studies. The causal dispersion
law [27] that corresponds to the linear attenuation law should

0.5 0.1564 0.1564 be implemented into the model because dispersion is known to
1.5 0.4540 0.4539 have a significant effect on propagation in solids [231, and ine

2.0 0.5878 0.5877 acausal linear attenuation law sometimes gives unsatisfactory
2.5 0.7071 0.7071 predictions for bottom-interacting propagation in the ocean
3.0 0.8090 0.8091
3.5 0.8910 0.8912 [251.
4.0 0.9511 0.9513
4.5 0.9877 0.9880 ACKNOWLEDGMENT
5.0 1.0000 1.0003
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